If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=4x+95
We move all terms to the left:
x^2-(4x+95)=0
We get rid of parentheses
x^2-4x-95=0
a = 1; b = -4; c = -95;
Δ = b2-4ac
Δ = -42-4·1·(-95)
Δ = 396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{396}=\sqrt{36*11}=\sqrt{36}*\sqrt{11}=6\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-6\sqrt{11}}{2*1}=\frac{4-6\sqrt{11}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+6\sqrt{11}}{2*1}=\frac{4+6\sqrt{11}}{2} $
| (D²+5D+6)y=0 | | 3x^2-53x+230=0 | | 3(x-40)=100-x | | 3(x-40)=100-x+40 | | 3(x-40)=100-x | | 300+10x+x-100x+10x+3=x | | 18x+30=46 | | 0.2x+8=0.16*3x-2 | | 2y-20=720 | | u=30-4u | | 4×+6×=9x | | 4x81=13x | | 2y-20+2y-20=180 | | 2y-20+2y+20=180 | | 2y-20=360 | | 3x-16=2x+30 | | 43(7)=x | | 43x7=x | | -7x=11= | | -2u/5=14 | | 2n-4=2n+4 | | 3n+9=n-5 | | X+(x-200)=1000 | | x+2x+3x+4x+5x+6x+7x+8x+9x+10x+11x+12x+13x+14x+15x=600 | | 1x+2x+3x+4x+5x+6x+7x+8x+9x+10x+11x+12x+13x+14x+15x=600 | | −5+2(−z−1)=5(−z−2)−5 | | 2q²+3q-270=0 | | 8n+4n=16+8 | | 500-3=150+x | | 3^-8x=27 | | (0.6^x)*4=0.05 | | 0.6^x*4=0.05 |